21 research outputs found

    Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system

    Get PDF
    Background: For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. Methods: In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Results: Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials were observed in the electroencephalography signals from the five patients. Conclusions: Number processing and arithmetic abilities as well as command following were demonstrated in the five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient behavioral responses. © 2015 Li et al

    Distinct interactions between fronto-parietal and default mode networks in impaired consciousness

    Get PDF
    Existing evidence suggests that the default-mode network (DMN) and fronto-pariatal network (FPN) play an important role in altered states of consciousness. However, the brain mechanisms underlying impaired consciousness and the specific network interactions involved are not well understood. We studied the topological properties of brain functional networks using resting-state functional MRI data acquired from 18 patients (11 vegetative state/unresponsive wakefulness syndrome, VS/UWS, and 7 minimally conscious state, MCS) and compared these properties with those of healthy controls. We identified that the topological properties in DMN and FPN are anti-correlated which comes, in part, from the contribution of interactions between dorsolateral prefrontal cortex of the FPN and precuneus of the DMN. Notably, altered nodal connectivity strength was distance-dependent, with most disruptions appearing in long-distance connections within the FPN but in short-distance connections within the DMN. A multivariate pattern-classification analysis revealed that combination of topological patterns between the FPN and DMN could predict conscious state more effectively than connectivity within either network. Taken together, our results imply distinct interactions between the FPN and DMN, which may mediate conscious state

    Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics

    Full text link
    Disorders of consciousness are a heterogeneous mixture of different diseases or injuries. Although some indicators and models have been proposed for prognostication, any single method when used alone carries a high risk of false prediction. This study aimed to develop a multidomain prognostic model that combines resting state functional MRI with three clinical characteristics to predict one year outcomes at the single-subject level. The model discriminated between patients who would later recover consciousness and those who would not with an accuracy of around 90% on three datasets from two medical centers. It was also able to identify the prognostic importance of different predictors, including brain functions and clinical characteristics. To our knowledge, this is the first implementation reported of a multidomain prognostic model based on resting state functional MRI and clinical characteristics in chronic disorders of consciousness. We therefore suggest that this novel prognostic model is accurate, robust, and interpretable.Comment: Although some prognostic indicators and models have been proposed for disorders of consciousness, each single method when used alone carries risks of false prediction. Song et al. report that a model combining resting state functional MRI with clinical characteristics provided accurate, robust, and interpretable prognostications. 52 pages, 1 table, 7 figure

    Olfactory response is a potential sign of consciousness: electroencephalogram findings

    Get PDF
    ObjectiveThis study aimed to explore whether olfactory response can be a sign of consciousness and represent higher cognitive processing in patients with disorders of consciousness (DoC) using clinical and electroencephalogram data.MethodsTwenty-eight patients with DoC [13 vegetative states (VS)/unresponsive wakefulness syndrome (UWS) and 15 minimally conscious states (MCS)] were divided into two groups: the presence of olfactory response (ORES) group and the absence of olfactory response (N-ORES) group according to behavioral signs from different odors, i.e., vanillin, decanoic acid, and blank stimuli. We recorded an olfactory task-related electroencephalogram (EEG) and analyzed the relative power and functional connectivity at the whole-brain level in patients with DoC and healthy controls (HCs). After three months, the outcomes of DoC patients were followed up using the coma recovery scale-revised (CRS-R).ResultsA significant relationship was found between olfactory responses and the level of consciousness (χ2(1) = 6.892, p = 0.020). For olfactory EEG, N-ORES patients showed higher theta functional connectivity than ORES patients after stimulation with vanillin (p = 0.029; p = 0.027). Patients with N-ORES showed lower alpha and beta relative powers than HCs at the group level (p = 0.019; p = 0.033). After three months, 62.5% (10/16) of the ORES patients recovered consciousness compared to 16.7% (2/12) in the N-ORES group. The presence of olfactory response was significantly associated with an improvement in consciousness (χ2(1) = 5.882, p = 0.023).ConclusionOlfactory responses should be considered signs of consciousness. The differences in olfactory processing between DoC patients with and without olfactory responses may be a way to explore the neural correlates of olfactory consciousness in these patients. The olfactory response may help in the assessment of consciousness and may contribute to therapeutic orientation

    Detecting awareness in patients with disorders of consciousness using a hybrid brain–computer interface

    Full text link
    Objective. The bedside detection of potential awareness in patients with disorders of consciousness (DOC) currently relies only on behavioral observations and tests; however, the misdiagnosis rates in this patient group are historically relatively high. In this study, we proposed a visual hybrid brain–computer interface (BCI) combining P300 and steady-state evoked potential (SSVEP) responses to detect awareness in severely brain injured patients. Approach. Four healthy subjects, seven DOC patients who were in a vegetative state (VS, n = 4) or minimally conscious state (MCS, n = 3), and one locked-in syndrome (LIS) patient attempted a command-following experiment. In each experimental trial, two photos were presented to each patient; one was the patientʼs own photo, and the other photo was unfamiliar. The patients were instructed to focus on their own or the unfamiliar photos. The BCI system determined which photo the patient focused on with both P300 and SSVEP detections. Main results. Four healthy subjects, one of the 4 VS, one of the 3 MCS, and the LIS patient were able to selectively attend to their own or the unfamiliar photos (classification accuracy, 66–100%). Two additional patients (one VS and one MCS) failed to attend the unfamiliar photo (50–52%) but achieved significant accuracies for their own photo (64–68%). All other patients failed to show any significant response to commands (46–55%). Significance. Through the hybrid BCI system, command following was detected in four healthy subjects, two of 7 DOC patients, and one LIS patient. We suggest that the hybrid BCI system could be used as a supportive bedside tool to detect awareness in patients with DOC

    Ten-Year Change in Disorders of Consciousness: A Bibliometric Analysis

    No full text
    Objectives: Disorders of consciousness (DoC) is a dynamic and challenging discipline, presenting intriguing challenges to clinicians and neurorehabilitation specialists for the lack of reliable assessment methods and interventions. Understanding DoC keeps pace with scientific research is urgent to need. We quantitively analyzed publications on DoC over the recent 10 years via bibliometrics analysis, to summarize the intellectual structure, current research hotspots, and future research trends in the field of DoC. Methods: Literature was obtained from the Science Citation Index Expanded of Web of Science Core Collection (WoSCC). To illustrate the knowledge structure of DoC, CiteSpace 5.8.R3 was used to conduct a co-occurrence analysis of countries, institutions, and keywords, and a co-citation analysis of references and journals. Also, Gephi 0.9.2 contributed to the author and co-cited author analysis. We found the most influential journals, authors, and countries and the most talked about keywords in the last decade of research. Results: A total of 1919 publications were collected. Over the past 10 years, the total number of annual publications has continued to increase, with the largest circulation in 2018. We found most DoC research and close cooperation originated from developed countries, e.g., the USA, Canada, and Italy. Academics from Belgium appear to have a strong presence in the field of DoC. The most influential journals were also mainly distributed in the USA and some European countries. Conclusions: This bibliometric study sheds light on the knowledge architecture of DoC research over the past decade, reflecting current hotspots and emerging trends, and providing new insights for clinicians and academics interested in DoC. The hot issues in DoC were diagnosing and differentiating the level of consciousness, and detecting covert awareness in early severe brain-injured patients. New trends focus on exploring the recovery mechanism of DoC and neuromodulation techniques

    A Potential Prognosis Indicator Based on P300 Brain–Computer Interface for Patients with Disorder of Consciousness

    No full text
    For patients with disorders of consciousness, such as unresponsive wakefulness syndrome (UWS) patients and minimally conscious state (MCS) patients, their long treatment cycle and high cost commonly put a heavy burden on the patient’s family and society. Therefore, it is vital to accurately diagnose and predict consciousness recovery for such patients. In this paper, we explored the role of the P300 signal based on an audiovisual BCI in the classification and prognosis prediction of patients with disorders of consciousness. This experiment included 18 patients: 10 UWS patients and 8 MCS- patients. At the three-month follow-up, we defined patients with an improved prognosis (from UWS to MCS-, from UWS to MCS+, or from MCS- to MCS+) as “improved patients” and those who stayed in UWS/MCS as “not improved patients”. First, we compared and analyzed different types of patients, and the results showed that the P300 detection accuracy rate of “improved” patients was significantly higher than that of “not improved” patients. Furthermore, the P300 detection accuracy of traumatic brain injury (TBI) patients was significantly higher than that of non-traumatic brain injury (NTBI, including acquired brain injury and cerebrovascular disease) patients. We also found that there was a positive linear correlation between P300 detection accuracy and CRS-R score, and patients with higher P300 detection accuracy were likely to achieve higher CRS-R scores. In addition, we found that the patients with higher P300 detection accuracies tend to have better prognosis in this audiovisual BCI. These findings indicate that the detection accuracy of P300 is significantly correlated with the level of consciousness, etiology, and prognosis of patients. P300 can be used to represent the preservation level of consciousness in clinical neurophysiology and predict the possibility of recovery in patients with disorders of consciousness

    A gaze-independent audiovisual brain-computer Interface for detecting awareness of patients with disorders of consciousness

    No full text
    Abstract Background Currently, it is challenging to detect the awareness of patients who suffer disorders of consciousness (DOC). Brain-computer interfaces (BCIs), which do not depend on the behavioral response of patients, may serve for detecting the awareness in patients with DOC. However, we must develop effective BCIs for these patients because their ability to use BCIs does not as good as healthy users. Methods Because patients with DOC generally do not exhibit eye movements, a gaze-independent audiovisual BCI is put forward in the study where semantically congruent and incongruent audiovisual number stimuli were sequentially presented to evoke event-related potentials (ERPs). Subjects were required to pay attention to congruent audiovisual stimuli (target) and ignore the incongruent audiovisual stimuli (non-target). The BCI system was evaluated by analyzing online and offline data from 10 healthy subjects followed by being applied to online awareness detection in 8 patients with DOC. Results According to the results on healthy subjects, the audiovisual BCI system outperformed the corresponding auditory-only and visual-only systems. Multiple ERP components, including the P300, N400 and late positive complex (LPC), were observed using the audiovisual system, strengthening different brain responses to target stimuli and non-target stimuli. The results revealed the abilities of three of eight patients to follow commands and recognize numbers. Conclusions This gaze-independent audiovisual BCI system represents a useful auxiliary bedside tool to detect the awareness of patients with DOC

    Emotion-Related Consciousness Detection in Patients With Disorders of Consciousness Through an EEG-Based BCI System

    No full text
    For patients with disorders of consciousness (DOC), such as vegetative state (VS) and minimally conscious state (MCS), detecting and assessing the residual cognitive functions of the brain remain challenging. Emotion-related cognitive functions are difficult to detect in patients with DOC using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised (CRS-R) because DOC patients have motor impairments and are unable to provide sufficient motor responses for emotion-related communication. In this study, we proposed an EEG-based brain-computer interface (BCI) system for emotion recognition in patients with DOC. Eight patients with DOC (5 VS and 3 MCS) and eight healthy controls participated in the BCI-based experiment. During the experiment, two movie clips flashed (appearing and disappearing) eight times with a random interstimulus interval between flashes to evoke P300 potentials. The subjects were instructed to focus on the crying or laughing movie clip and to count the flashes of the corresponding movie clip cued by instruction. The BCI system performed online P300 detection to determine which movie clip the patients responsed to and presented the result as feedback. Three of the eight patients and all eight healthy controls achieved online accuracies based on P300 detection that were significantly greater than chance level. P300 potentials were observed in the EEG signals from the three patients. These results indicated the three patients had abilities of emotion recognition and command following. Through spectral analysis, common spatial pattern (CSP) and differential entropy (DE) features in the delta, theta, alpha, beta, and gamma frequency bands were employed to classify the EEG signals during the crying and laughing movie clips. Two patients and all eight healthy controls achieved offline accuracies significantly greater than chance levels in the spectral analysis. Furthermore, stable topographic distribution patterns of CSP and DE features were observed in both the healthy subjects and these two patients. Our results suggest that cognitive experiments may be conducted using BCI systems in patients with DOC despite the inability of such patients to provide sufficient behavioral responses
    corecore